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1. Introduction 

Ceramic materials are being investigated as bore materials for high performance gun barrels.  
The superior high temperature behavior and excellent erosion resistance make them strong 
candidates for application in the harsh environment produced during a ballistic event.  The 
application of these materials is not a novel approach.  Several previous investigations by the 
U.S. Army, Navy, and different contract organizations have considered the use of ceramic 
materials in gun bores.  The success of these previous investigations has been limited at best, but 
advances in ceramic material processing, probabilistic design, and sheathing technologies have 
prompted the U. S. Army Research Laboratory to renew investigations into ceramic materials. 

The primary factor preventing the simple insertion of ceramics into gun bores has been the 
inability to design around the low tensile strength, large variability in the observed strength, and 
brittle behavior of the materials.  The objective of the present research is to develop analytic 
models for the design of ceramic-lined gun barrels capable of surviving interior ballistic events.  
The first section of this report will focus on the derivation of the statistical equations for 
predicting failure in ceramics, while the second will deal with the development of a model for 
calculating stress.  The results of the completed model will be presented showing the usefulness 
of the model. 

1.1 Statistical Model Development 

Statistical methods are necessary to properly design around the variability in observed strength 
of ceramic components.  The most recognized approach incorporates the Weibull distribution 
equation.  The original Weibull equation calculates a probability of failure (Pf) for a brittle 
material subjected to a uniaxial stress distribution: 
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with σ being the stress, σo is the Weibull strength or scale parameter, and m being the Weibull 
modulus.  This expression considers only one type of flaw population located in the volume of 
the ceramic body subjected to a uniform stress (1).  For a pressurized tube, additional conditions 
need to be evaluated, namely the probability for a nonuniform stress state and multiple flaw 
populations.  This report will derive the equations needed to calculate the probability of failure 
due to volume and surface flaws for a tube subjected to internal and external pressures only.  
Failure calculations evaluate the nonuniform hoop tensile stresses only and assume that the 
probability of failure of a part in compression is zero (as described in ASTM Standard C  
1239-00) (2).  The calculations also assume that the tube is loaded along its entire length, thus 
eliminating the consideration of any edge effects. 
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1.2 Volume Flaws 

For the condition when the stress distribution is unidirectional, but not uniform, 

 

                                      , (2) 

 
where                                                                                                 

, (3) 

  
 
σmax is the maximum stress in the material, σ(r) is the function describing the stress distribution, 
mv is the volumetric Weibull modulus, and kvV is the effective volume of the sample (3).  Some 
distinction needs to be placed on the Weibull material scale parameter (σo) since it is not always 
the same as the Weibull characteristic strength (often listed as σθ − but not to be confused with 
hoop stress in this report).  The characteristic strength term, σθ, is often reported, but is test and 
sample geometry dependant.  The volumetric material scale parameter, σoV, is strength per unit 
volume of uniform, uniaxial tension (hence the unusual units of MPa*mm3/m

v).   

For a tube subjected to internal and external pressures, the Lamé cylinder expression for the hoop 
stress (σθ) is 

                                          , (4) 

where r is radius, P is the pressure, and i and o refer to the inner and outer surfaces, respectively 
(4).  This distribution exhibits maximum stress at the inner surface when Pi > Po, and is given by 

 
  (5) 

 

The effective volume, kVV, for a tube subjected to internal and external pressures is found by 
substituting equations 4 and 5 into 3: 

 

  (6) 

 

It should be noted that including the external pressure condition creates three regimes of 
behavior: Pi dominant, transition, and Po dominant.  In the Pi dominant condition, where  
Pi >> Po, the hoop stress is tensile through the thickness, and exhibits a maximum at the inner 
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surface.  In the Po dominant case, where Po >>Pi, it is compressive throughout the thickness.  In 
the transition regime, where Pi>Po , the inner portion of the tube is tension, while the outer is in 
compression. 

The limits for the different dominant behaviors are determined by setting the hoop stress terms to 
zero at both surfaces and solving for the external pressure: 

  
 

  (7) 
 
 
 

Potrans is the solution for when the outer surface of the tube goes into compression, while 
Pocompression is when the entire tube is in compression.  In the transition region, the radial position 
where the hoop stress is zero is necessary for evaluating kVV.  This location, termed rneu, is given 
by 

  
  (8) 

 
When Potrans < Po < Pocompression, a portion of the tube is in compression (ri to rneu), so kVV changes 
to 

 

  (9) 

 
 

As stated earlier, if Po > Pocompression, then kVV = 0. 

With the kVV term, the expression in equation 2 can be solved for the Pf value for volume flaws. 

1.3 Surface Flaws 

The expression for the probability of failure is similar to that of the volume flaws: 

 
    (10) 

 
however, due to the population of flaws located at surface the integral for the effective area, kAA 

operates over the surface area, not the volume.  The effective area is evaluated over the inner 
surface, the two ends, and the outer surface as shown in equation 11: 
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In the case when Potrans<Po<Pocompression, the kAA expression changes to 
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Since the outer surface is in compression the outer surface term is dropped and the integral is 
evaluated on the tensile region.  If Po > Pocompression, then kAA = 0. 

1.4 Total Probability of Failure 

The two expressions for probability of failure, one for volume flaws and one for surface flaws, 
are combined to calculate the probability of failure for the tube (5): 
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where Pf is the total probability of failure for the component and Pfi is the probability of failure 
for the ith flaw population or location.  Given the two Weibull parameters (for each flaw 
population), the new Pf value can be calculated for a combination of internal and external 
pressure.  Also, more terms can be added to equation 13 to address multiple flaw populations or 
to address each flaw type encountered. 

2. Sheathed Tubes 

In order to develop a gun system capable of withstanding the pressure loads induced by the 
ballistic firing, sheathing material needs to be applied in a way to generate beneficial 
compressive pre-stress.  The level of the pre-stress is highly dependant upon the elastic 
properties of the sheath and ceramic, the strengths of both materials, and the thermal expansion 
coefficients.   Analytic models are available to describe the response of tubes to the loading 
conditions that can be expected from a gun system. 

, 

. 

. 

(12)
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2.1 Sheathed Tube Mechanics 

The simplest model for sheathed tubes is that of two isotropic materials, which is adequate for a 
metal-sheathed ceramic tube.  The equations located in the text by Herakovich and the works by 
Rousseau and Hyer provide good guidance to calculating the stress, strain, and displacement 
relations for a system of axisymmetric, nested tubes subjected to uniform internal and external 
pressure, axial tension and compression, axial torsion, and uniform temperature changes (6–8).  
They are sufficient to model interference stresses from shrink-fit and press-fit operations which 
are needed for imparting a beneficial pre-stress into the ceramic.   

The most well known and simplest expression for stress in an isotropic tube due to internal and 
external pressure is the Lamé cylinder expression:   
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where 
 σθ =  hoop stress 
 a =  inner radius 
 b  =  outer radius 
 po =  external pressure 
 pi  =  internal pressure 
 r  =  radial location. 

This expression is useful for calculating the stresses in a monolithic ring with an external 
pressure representing the effects of the sheath.  Simulations using this approach are useful for 
determining the effects of varying the material properties, but it is not effective for simulating a 
sheathed system since the external pressure on the ceramic is constant. 

In order to accurately model a sheathed system, a more comprehensive model is necessary.  In 
the chapter on laminated tubes in the text by Herakovich, expressions for a layered tube are 
developed.  The following expressions use the cylindrical coordinate system labeled x (axial), θ 
(circumferential), and r (radial) directions. 

For an isotropic material, the axial, tangential, and radial displacements, u(x), v(x, r), and w(r) 
respectively, are defined as 
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where A1, A2, εx
o, and γο  are unknown constants.  Similarly, the expressions for anisotropic 

materials are identical for u(x) and v(x,r), but w(r) becomes 

 TrrrrArArw x ∆Ψ+Ω+Γ++= − 200
21)( γελλ  
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where ijC  is a transformed stiffness matrix value. 

For a single ply, there are the four unknowns for which to solve, but the number of unknown 
scales for laminates of more than one ply.  There are single values for εx

o and γο, but  there are 
values for A1 and A2 for every layer.  For a structure with N layers, this translates to a total 
number of unknowns of 2N + 2.   

The first step to solve for the unknown values is to transform the equations for displacement to 
the strain and stress relations.  This allows for the use of the stress and strain boundary 
conditions to help define the unknown values.  First consider the strain-displacement relations 
for cylindrical coordinates: 
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Substituting equations 15–17, the strains can be written in terms of the unknown values.  
Using the three-dimensional constitutive equations in cylindrical coordinates, the stress 
expression can be derived from the strain equations: 
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where σ and τ are normal and shear stresses, Cij is the transformed stiffness matrix, and ε and γ 
are the normal and shear strains.  Thermal and filament winding stresses can be included with a 
modification to the constitutive equations.  If the strain values are modified to include thermal 
and winding strain values, as in 

 wThE εεεε +−=   , (19) 

where ε is the total strain, εE is the elastic strain, εTh is the thermal strain (α∆T), and εw is the 
elastic strain in the tow due to winding tension.  Winding strain is the elastic strain imparted due 
to tow tension in winding, or 

 
AE
Fw =ε    , (20) 

where F is the force on the tow, A is the area of the tow, and E is the elastic modulus of the 
fibers (9). 

With the equations for stress, strain, and displacement, the unknowns can be found by applying 
different boundary conditions.  There are force and torque conditions that must be met: 
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The applied axial force (Fx) and axial torque (Tx) are equal to the sum of the axial and shear 
stresses integrated over the area of each layer.  This provides two equations for the 2N + 2 
unknowns. 

Two more equations come from the balance of stresses at the inner and outer surfaces of the 
tube.  The radial stress at each surface must balance the applied pressure, or 
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The final 2N – 2 equations come from continuity of traction and displacement at each internal 
interface.  The radial stresses and displacements must be continuous across each interface, so 
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There are now 2N + 2 equations and 2N + 2 unknowns, so the system can be solved for a given 
loading conditions. 
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2.2 Failure Surfaces for Pressurized Sheathed Tubes 

The stress relations are used to calculate the stress profile through the wall of the ceramic tube.  
The values are the input into the probability of failure expressions derived in the previous 
sections, and the probability of failure for a pressurized tube is calculated.  Mathcad* software 
was used to solve for variations in the material properties of the sheath and ceramic, geometry of 
the tubes, and operating conditions.  With the implementation of a failure criterion for the sheath, 
the model can be used for designing optimal pre-stress generation with failure of the different 
materials. 

A good example of this problem is the effect of the change in temperature has on the volumetric 
Pf  of a steel-sheathed silicon nitride tube with an internal pressure of 500 MPa.  The material 
properties are listed in table 1, and the failure curves in figure 1 are for a tube with an inner 
diameter (ID) of 10 cm, and outer diameter (OD) of 20 cm, length of 1 m. The thickness of the 
ceramic was varied from 2.5, 5, and 7.5 cm with the remaining portion of the 10-cm thickness 
being steel. Due to the thermal expansion mismatch between steel (α = 12.8 ppm/°C) and silicon 
nitride (α = 3 ppm/°C), cooling the tube assembly will generate compressive stresses in the 
ceramic.  The probability of failure decreases as the ∆T value becomes more negative. 

Table 1.  Material properties for steel and silicon nitride. 

Property Steel Si3N4 
Modulus (GPa) 200 310 
Poisson’s ratio 0.32 0.24 
CTE (ppm/°C) 12.8 3 
σoV (MPa*mm3/m) — 1190 
mv — 25 

The probability of failure is plotted on a logarithmic scale to illustrate the behavior when the 
values become increasingly small.  The thinner ceramic wall has a larger probability of failure at 
a small ∆T, but surpasses the thicker ceramic assemblies between –100 and –200 °C. 

A more informative method of displaying the effects of varying ceramic wall thickness and pre-
stress levels is to create failure surfaces for the sheath and ceramic materials (10).  This is 
accomplished by fixing the total wall thickness and varying the ceramic-to-sheath ratio.  Also, 
the pre-stress level can be varied from an unstressed condition to a large magnitude stress.  
Failure will be calculated by the probability of failure of the ceramic and by a yield failure 
criterion for the sheath.  The resulting plot is illustrated in figure 2.  The x-axis is the change in 
temperature from when the sheath makes initial contact with the ceramic for a shrink-fit 
operation.  The y-axis is the ratio of the ceramic wall thickness to total wall thickness (0% is a  
steel tube with no ceramic and 100% is all ceramic with no sheath).  The color codes are for the 
log of the probability of failure—zero is a Pf of 100% or zero chance of success, negative six is a 

                                                 
*Mathcad is a registered trademark of Mathsoft. 
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Figure 1.  Probability of failure for a steel-sheathed silicon nitride tube with an internal pressure 
of 500 MPa.  The three curves are for different ceramic wall thickness for a tube with 
an ID of 10 cm, an OD of 20 cm, and a length of 1 m. 

 

Figure 2.  Failure surface for a pressurized tube.  The yellow is ceramic failure, green is the 
sheathing failure, and red and purple are the optimal designs. 
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one in 1 million chance of failure.  Also, the sheathing material can be evaluated for failure as 
well, allowing for the determination of an optimal design space for the system.  For the materials 
selected here, a Von Mises yield criterion was used to calculate failure in the sheathing layer. 
When the sheathing failure criterion is met, the value is boosted to a value of one to separate it 
from the ceramic failures (log(Pf) is always less than or equal to zero). 

For this example, the design space with the optimal chance of success would be to have the wall 
thickness between 20%–40% ceramic and a ∆T of –300 to –375 °C. 

3. Summary 

This work derived equations for calculating the effective area and volume and the probability of 
failure for a ceramic tube subjected to internal and external pressure.  The equations have been 
connected to an elasticity model to calculate the probability of failure for a sheathed ceramic 
tube.  By combining the probability of failure for the ceramic and a failure criterion for the 
sheath, maps of the optimal design spaces can be generated.  A sample calculation demonstrated 
the ability to model a pressurized, sheathed tube with varying amounts of thermal expansion 
mismatch. 
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   M RAFTENBERG 
   S SCHOENFELD 
   T WEERASOORIYA 
  AMSRD ARL WM TE  
   CHIEF 
   J POWELL 
 



 
 
NO. OF NO. OF 
COPIES ORGANIZATION COPIES ORGANIZATION 
 

 23

 1 LTD 
  R MARTIN 
  MERL 
  TAMWORTH RD 
  HERTFORD SG13 7DG  
  UK 
 
 1 CIVIL AVIATION 
  ADMINSTRATION 
  T GOTTESMAN 
  PO BOX 8 
  BEN GURION INTRNL AIRPORT 
  LOD 70150 
  ISRAEL 
 
 1 AEROSPATIALE 
  S ANDRE 
  A BTE CC RTE MD132 
  316 ROUTE DE BAYONNE 
  TOULOUSE 31060 
  FRANCE 
 
 1 DRA FORT HALSTEAD 
  P N JONES  
  SEVEN OAKS KENT TN 147BP 
  UK 
 
 1 SWISS FEDERAL ARMAMENTS 
  WKS 
  W LANZ 
  ALLMENDSTRASSE 86 
  3602 THUN 
  SWITZERLAND 
 
 1 DYNAMEC RESEARCH LAB 
  AKE PERSSON 
  BOX 201 
  SE 151 23 SODERTALJE 
  SWEDEN 
 
 1 ISRAEL INST OF TECHLGY 
  S BODNER 
  FACULTY OF MECHANICAL 
  ENGR 
  HAIFA 3200 
  ISRAEL 
 
 1 DSTO 
  WEAPONS SYSTEMS DIVISION 
  N BURMAN RLLWS 
  SALISBURY 
  SOUTH AUSTRALIA 5108 
  AUSTRALIA  

 1 DEF RES ESTABLISHMENT 
  VALCARTIER 
  A DUPUIS 
  2459 BLVD PIE XI NORTH 
  VALCARTIER QUEBEC 
  CANADA 
  PO BOX 8800 COURCELETTE 
  GOA IRO QUEBEC 
  CANADA 
 
 1 ECOLE POLYTECH 
  J MANSON 
  DMX LTC 
  CH 1015 LAUSANNE 
  SWITZERLAND 
 
 1 TNO DEFENSE SECURITY & SAFETY 
  R R IJSSELSTEIN 
  PO BOX 96864 
  2509 JG THE HAGUE 
  THE NETHERLANDS 
 
 2 FOA NATL DEFENSE RESEARCH 
  ESTAB 
  DIR DEPT OF WEAPONS & 
  PROTECTION 
  B JANZON 
  R HOLMLIN 
  S 172 90 STOCKHOLM 
  SWEDEN 
 
 2 DEFENSE TECH & PROC 
  AGENCY GROUND 
  I CREWTHER 
  GENERAL HERZOG HAUS 
  3602 THUN 
  SWITZERLAND 
 
 1 MINISTRY OF DEFENCE 
  RAFAEL 
  ARMAMENT DEVELOPMENT 
  AUTH  
  M MAYSELESS 
  PO BOX 2250 
  HAIFA 31021 
  ISRAEL 
 
 1 B HIRSCH 
  TACHKEMONY ST 6 
  NETAMUA 42611 
  ISRAEL 
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 1 DEUTSCHE AEROSPACE AG 
  DYNAMICS SYSTEMS 
  M HELD 
  PO BOX 1340 
  D 86523 SCHROBENHAUSEN 
  GERMANY 
 

 




